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ABSTRACT
Users on social networks primarily do two things, connect
to existing or new friends and exchange information. Re-
cently, social media apps have become the primary infor-
mation source for users to consume news stories. Users are
inundated with a flood of information from social media net-
works shared by their friends and other content providers.
For social media networks, it is important for us to study
users’ friendships and interests in order to best serve their
need. However, given the nature of online applications,
information on both sides is highly incomplete and noisy.
Inspired by the well-known homophily phenomenon which
found the two properties strongly interleaving, we propose to
jointly learn them by leveraging their data redundancy and
mutual reinforcement. Specifically, we exploit homophily by
iteratively addressing smoothness on the graph in two direc-
tions, i.e., from closeness to similarity (stronger links lead to
more similar attributes), and vice versa. The two processes
are done in a unified probabilistic framework through label
propagation and graph construction. The refined user links
and attributes are immediately useful for various tasks in-
cluding link recommendation and content targeting on social
networks.
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1. INTRODUCTION
The problems of link prediction and attribute inference

have been attracting intense research attention ever since
the emergence of online social networks. On the one hand,
predicting non-existing links in large networks directly en-
ables services like link recommendation that add value for
both users and the network businesses. The typical goal is
to complete the networks, with predicted links that can form
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but have not formed [1, 2, 10, 18, 29]. On the other hand,
inferring user attributes such as location and interest is valu-
able in tasks like content targeting, which improves business
efficiency as well as user experience. The basic objective is
also to complete the networks, with inferred labels assigned
to originally unlabeled users [3, 5, 8, 24, 28].

While each of the two problems is challenging due to the
nature of incompleteness and noise in social networks, we
note that user links and attributes are highly interleaving,
according to the famous concept of homophily in network
data [5, 15, 28]. We further emphasize that homophily is bi-
directional, i.e., 1) users linked to each other tend to share
similar attributes, and 2) users with more similar attributes
tend to link more closely. Based on this concept, we propose
to jointly learn user links and attributes on social graphs.
However, unlike existing methods that combine links and at-
tributes in a static way by augmenting the networks [5, 22,
28, 29], we propose to dynamically grow the social graph by
iteratively learning user links w.r.t. inferred user attributes,
and inferring user attributes based on learned user links,
aiming to fully leverage the interactions and mutual rein-
forcement between links and attributes.

The challenges lie in coherently combining links and at-
tributes and properly constructing the graph. To address
them in a principled way, we develop a unified probabil-
ity framework. Inspired by the widely used affinity graphs
in traditional graph learning [11, 31], we model two prox-
imities on social graphs: the similarity on attributes and
the closeness on links. Then we implement homophily by
addressing smoothness on social graphs, i.e., aligning simi-
larity and closeness. The framework allows us to rigorously
infer attributes based on links via label propagation (LP)
and recover links based on attributes via graph construction
(GC). With properly designed interfaces and pipelines, we
propose Bi-directional joint inference for user Links and At-
tributes (BLA), which iteratively addresses smoothness on
social graphs in two directions through LP and GC, and
fully leverages the mutual reinforcement between links and
attributes. During the BLA iterations, we carefully main-
tain the probability interpretations of attribute assignment
and link existence through proper normalizations and avoid
over-construction of the graph through regularizations.

Figure 1 gives an intuitive example of BLA that jointly
learns user links and attributes. (a) is the original graph,
where nodes {vi}6i=1 are the users and solid lines are their
observed links. v2, v3 and v4 have attribute A, e.g., the
same graduating school. Since neither attributes nor links
are complete, precise prediction on each side is hard. E.g., it



is hard to directly tell either v1 or v5 is more likely to possess
A, and either e36 (between v3 and v6) or e45 (between v4 and
v5) is more likely to exist. (b) and (c) illustrate the joint
inference process of BLA that learns both attributes and
links. Specifically, after the first round of LP, v1 and v5 are
inferred with similar attribute probabilities, and then after
the first round of GC, a weak link e45 is predicted between
v4 and v5. Later on, due to the existence of e45, A can be
assigned to v5 with a higher probability than v1 and v6. In
consequence, e45 is predicted as more likely to exist than e36.
As we can see, BLA starts from learning the most probable
links and attributes and then continues to approximate the
complete and precise graph step by step. Note that through
proper regularization, we require BLA to converge at graphs
like (c) rather than an over-construction, whereA is assigned
to all nodes and a link is predicted between every pair.
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Figure 1: A toy example of a simple social graph.

Besides the challenges of incomplete and noisy graphs,
large scales of real-world social networks severely prohibit
the direct application of most traditional GC and LP al-
gorithms. E.g., on a large scale real-world social network
with millions of users and their links, simply counting the
mutual friends among each pair of users takes days to fin-
ish on the most advanced PC. To address the efficiency of
GC and LP on large social graphs, we design a novel edge
sampling algorithm that significantly reduces computation
without sacrificing performance. We also implement a scal-
able map-reduce pipeline with Spark GraphX [30], utilizing
the efficient aggregate and pregel functions.

The framework is designed with the flexibility to plug
in various probability adjustment and regularization based
on insights about the data. To explore more interesting
challenges and opportunities, we perform data analysis on
an anonymous subset of Snapchat’s social graph including
about 100K users with their links and attributes. We utilize
the insightful results to develop intuitive sub-models and
seamlessly build them into the BLA pipeline. Two exam-
ples of effective data-driven sub-models are presented in Sec
5 and the improvements they make are evaluated in Sec 6.

Summary. We propose BLA to learn user links and at-
tributes on social graphs. Our contribution can be summa-
rized as follows:

1. We develop a unified probabilistic framework to itera-
tively learn user links and attributes, which leverages
the data redundancy on each side and the mutual re-
inforcement between the two (Sec 3).

2. We implement an efficient BLA pipeline on real-world
large social graphs with a novel edge sampling method
and optimize it to fully utilize the scalable GraphX
and MapReduce functions of Spark (Sec 4).

3. We design an adaptive label significance model and a
dynamic user activeness model based on real network
data analysis and seamlessly integrate them into the
BLA framework (Sec 5).

4. We conduct extensive experiments on two public social
networks and a large Snapchat dataset to show the
supreme efficiency and effectiveness of BLA (Sec 6).

2. RELATED WORK
BLA is closely related to three groups of algorithms: graph

construction, label propagation and graph augmentation.
Graph construction (GC) is essential for modeling network

data [10]. It basically constructs a graph G = {V, E ,A},
where V is the set of nodes (users), E is the set of edges
(links) and A is the set of attributes (labels) associated on
V. However, in social networks, E is severely sparse and in-
complete, i.e., many links that can form do not form, which
motivates the task of link prediction. Traditional methods
are mostly based on the topology of existing links, leveraging
quantities such as edge density and node degree [9], while
some also utilize random walks or spectral algorithms [19,
32]. They fail to leverage the rich information in A. A few
recent methods exploit user attributes like age and location
to alleviate the sparsity of E [1, 2, 29]. However, since A
itself is also sparse and incomplete, predictions on E may
actually suffer from the noises brought by A.

Label propagation (LP) is a common method for infer-
ring node attributes (labels) based on link structure [33, 34].
However, literature in LP focuses on either efficient propa-
gation of attributes [11, 26] or fast approximation of affinity
graphs [6, 12], rather than learning precise graphs with noisy
data. As pointed out in [3], in social networks, the lack of
precise and complete link structure puts unique challenges
to the inference task, which usually leads to poor perfor-
mance. Specifically, LP enforces the nodes to share similar
attributes if they are measured as close on the graph. Thus,
it works well only when the closeness is systematically enu-
merated everywhere, i.e., links between any pair of nodes
exist and are properly weighted. This is obviously not the
case in social networks, where E is incomplete and usually
unweighted. Therefore, propagating attributes directly on E
can hardly lead to satisfactory results.

As it is intuitive to simultaneously learn A and E , al-
gorithms based on this idea have also been developed re-
cently, most of which utilize the technique of graph augmen-
tation (GA). With a distance function or network embedding
learned on a heterogeneous network augmented by attribute
nodes, they are then able to predict new links among un-
connected nodes as well as attributes of unlabeled nodes [5,
22, 28, 29]. However, since the links and attributes they use
to learn the distances or embeddings are both static, the
interactions and mutual reinforcement between A and E are
not fully exploited.

3. THE BLA FRAMEWORK

3.1 Problem definition
Inspired by the popular affinity graphs in traditional ma-

chine learning literature, we use link probabilities and at-
tribute probabilities to formulate social graphs which can
better model user links and attributes under noisy envi-
ronment. Instead of using binary values, probabilities pro-



file the quantities in a finer scale. Under the probabilistic
framework, relative strengths of user links and attributes
are naturally comparable. We formally define our problem
as follows:

Input. Given a social network S, we represent its set of
users as V, their links as E , and their attributes as A. There-
fore, S can be represented as a graph G = {V, E ,A}. For
most common social networks, ∀eij ∈ E is usually binary,
where eij = 1 indicates the existence of a link between vi
and vj and 0 otherwise. ∀ai ∈ A records the L attributes
of vi. Each component of ai is a binary value representing
whether vi is associated with a specific attribute value.

Output. Our objective is to learn a complete and precise
social graph G∗ = {V,W,Y}, where each pair of users vi and
vj is connected by a link with a weight wij ∈ [0, 1], ∀wij ∈
W, which encodes the probability of vi and vj to share a link,
and each user vi is associated with a refined attribute vector
yi ∈ [0, 1]L, ∀yi ∈ Y, where each component of yi encodes
the probability of vi to possess a specific attribute (label).
The inferred probability measures in W in the framework
effectively differentiate the strengths of existing links and
predict the existence of missing links (when eij = 0 and wij
is large), while those in Y work similarly on existing and
missing labels for each user. The probability constraints
then effectively avoid the dominance of certain attributes
and the explosion of link weights.

3.2 Learning paradigm
BLA is motivated by the bi-directional homophily theory:

1. Users are more likely to link with whom they share
more similar attributes with.

2. Users are more likely to share similar attributes with
whom they link more closely with.

In the proposed framework, we implement the two prop-
erties in a principled way by addressing smoothness, i.e.,
aligning similarity and closeness on social graphs in two
directions. On the one hand, we use W to encode the pre-
dicted probabilities of links, where wij can be interpreted
as the closeness between vi and vj on G, differentiating
close friends (with stronge connections) and ordinary friends
(with weak connections). On the other hand, we use Y to
record the inferred probabilities of attributes. Thus, yi and
yj can be used to compute the similarity between two users
vi and vj . With the two proximities well defined, the first
property of BLA can be implemented through computing
closeness based on similarity, while the second addressed by
constraining similarity w.r.t. closeness.

3.3 Learning W
We first introduce our Graph Construction (GC) method

for learning W. In social networks, link structures are usu-
ally incomplete and edge weights are often missing. E.g.,
a typical Facebook user is connected to about 100 out of
1 billion users, and thus many links that can be possibly
formed are missing [5]. In addition, links between differ-
ent pairs of friends are in binary form from observation, al-
though strengths of links which indicate the closeness among
friends should be different. To properly construct a complete
and precise link matrix W of a social network, we leverage
paths on the graph. For each pair of nodes, we want to

account for two quantities: the number of paths between
the nodes and the importance of these paths. Moreover, we
hope that W should have the proper probability meanings
that differentiate the strengths of links.

The Random Walk Theory [4, 29] provides us with a prin-
cipled solution. Specifically, the one-step transition proba-
bility p1ij of a random walker from vi to vj is defined as

p1ij = wij/di, where di =
∑
j wij . It measures the direct

closeness between vi and vj in vi’s view. Therefore, the im-
portance of different edges can now be distinguished– it is
often the case that the more links one node has, the less im-
portant each link is to it on average. Since direct closeness
is extremely sparse and incomplete in a large social graph,
we intuitively extend the random walk length and use the
K-step transition probabilities as a measure of the complete
closeness, i.e., pKij =

∑
ι∈I p

K
ι . I is the set of all K-step

paths between vi and vj and pKι =
∏K
k=1 p

1
k, where p1k is the

one-step transition probability on the kth edge passed by
path ι. The multiplication of probabilities differentiates the
importance of each path and the summation over multiple
paths takes the number of paths into consideration.

Thus, the objective of GC can be formalized as follows,

JGC = (1− β)
∑
i,j

(wij − eij)2 + β
∑
i,j

(wij − pij)2, (1)

where eij ∈ E is the binary value indicating the existence
of a direct edge between vi and vj , and pij is the path-wise
transition probability from vi to vj . β controls the trade-off
between the two terms, depending on how much adjustment
we want to make on the original link structure.

Setting K = 2 allows us to leverage the individual close-
ness of vi and vj to their mutual friends to infer their actual
closeness. It also leads to efficient computations through
aggressive reduction. Since data analysis on typical social
networks suggests that links between users without any mu-
tual friends are extremely rare [5, 10], the completeness of
the constructed graph can still be guaranteed.

While measuring two-step transition probabilities efficiently
considers mutual friends, we aim to incorporate user at-
tributes into the process of computing W as suggested by
the first property of the bi-directional homophily theory. For
this purpose, before computing the two-step transition prob-
abilities, we manually adjust each p1ij by multiplying an at-
tribute similarity scaler sij = sim(yi,yj) (different kinds of
similarity measures can be used here, such as the cosine sim-
ilarity) and then re-normalizing {pi·} on each node. In this
way, the random walker will ‘prefer’ edges connecting nodes
with more similar attributes.

Note that, while attribute similarity is an intuitive factor
leading to properly adjusted transition probabilities, other
insightful factors can also be leveraged. We will discuss more
about the flexibility of BLA in Sec 5.

3.4 Inferring Y
One standard way to infer node properties on a graph

is through Label Propagation (LP), which aims to label all
data based on a limited number of labeled ones and an affin-
ity graph describing the closeness among all data [31, 33].

We find that our task of improving the quality of Y based
on A and E (or W) is intrinsically similar to the objective
of LP. Inspired by the second property of the bi-directional
homophily theory, we like the users to get larger influences
from friends with stronger links, and the final attributes



to be based on what we originally know about the user as
well as the influences from the linked friends. Therefore,
we adopt LP to infer attributes for users by constraining
attribute similarity according to link closeness on the graph.
The objective of LP can be formalized as following,

JLP = (1− α)
∑
i

||yi − ai||2 + α
∑
i,j

wij ||yi − yj ||
2, (2)

where yi and ai can be a single attribute value or a vector of
multiple attribute values. If multiple values are concerned,
propagation can be done separately for each of them. This
formulation provides an efficient and principled way to infer
user attributes, where the first term leverages the available
A in S, and the second term exploits the local consistency
of attributes among linked users. The propagation strength
parameter α controls the trade-off between the two terms.

4. SCALABLE BLA LEARNING
Overall, BLA solves the following optimization problem:

Ŵ, Ŷ = arg min
W,Y

(
JGC + JLP

)
. (3)

To fully leverage the interaction and mutual reinforcement
between Y and W, we adopt an iterative learning process
that is similar to the block coordinate descent approach [27].
It works for the optimization of Eq. 3 because if W is fixed,
then Eq. 2 is convex and Ŷ can be obtained, and vice versa.
We introduce the inference framework of BLA as below:

• Step 0: Extract the links E and attributes A from
the given data. Initialize the link probabilities W0 as
E and attribute probabilities Y0 as A. Initialize the
iterator t = 0 and set the maximum iterator T .

• Step 1: Using the current link structures implied by
Wt, optimize the attribute probabilities as Yt+1.

• Step 2: Using the current attribute assignments im-
plied by Yt+1, optimize the link probabilities asWt+1.
Increase the iterator t = t+ 1.

• Step 3: Repeat Step 1-2 until t = T or convergence.

We propose to implement Step 1 by LP based on Eq. 2,
and Step 2 by GC according to Eq. 1. In the following
subsections, we will explain each step in detail.

4.1 Social Graph Initialization
We describe how to computeA and E from a given dataset.

In social networks, user attributes (labels) can be extracted
from various interesting items. E.g., existing user profiles,
topically modeled posts (tweets, pictures, articles), semanti-
cally clustered contents (links clicked, pages viewed) and so
on. We assume there are L such interesting items in a par-
ticular network, and would like to obtain an L-dimensional
attribute vector ai for each user vi. For categorical profiles
like those on Facebook1 and G+2, we can generate a label
lj for each common value (e.g., value Snap for profile com-
pany). For each vi, we assign 1 to aij if vi has the specific
profile value and 0 otherwise. For topical posts and clustered
contents on social media sites like Twitter3 and Snapchat4,

1https://www.facebook.com/
2https://plus.google.com/
3https://twitter.com/
4https://www.snapchat.com/

we could generate a label lk for each topic or cluster, and
count the number of times tik that vi interacts with lk (e.g.,
posting a tweet with a specific topic or clicking a link within
a specific content group). We assume that for each label

lk, {tik}|V|i=1 follows the power law distribution, where most
users interact with lk in an average frequency while a small
portion of users interact in very high frequencies [17]. There-
fore, we demote the stress on large volumes of interactions
made by the few users and focus on small volumes around
the average by using the sigmoid function adjusted to the
range of [0, 1) as below.

aij = σ
( tij −min (t·j)

t̄·j −min (t·j)

)
, (4)

where σ(x) = 1−e−x

1+e−x . tij is shifted to [0,∞) by deducting

min (t·j) and then normalized by dividing t̄·j −min (t·j).
The computation of E is similar. E.g., consider the com-

munication frequency cij among vi and vj in chatting Apps
like Snapchat and Messenger5, where more frequent com-
munication indicates stronger connection. Similarly, we still
assume a power law distribution for cij , and compute eij as

eij = σ
(cij −min (ci·)

c̄i· −min (ci·)

)
. (5)

We can also consider simpler types of link, e.g., explicit
friendship, where we set eij to 1 if vi and vj are friends
and 0 otherwise.

4.2 Attribute Inference Via Label Propagation
Based on the graph structure described by link probabili-

tiesW, inferring user attributes (labels) can be done through
LP on the graph. LP is a well-studied problem in graph-
based semi-supervised learning [31, 33]. According to Eq. 2,
we aim to learn a labeling function f that applies on all la-
beled and unlabeled nodes. The value of f should be close
to the true labels on labeled nodes, while changing smoothly
among all nodes. In this paper, we resort to one specific LP
technique described in [31], which directly implements the
idea of transductive learning on graphs. The algorithm is
closely related to the famous PageRank algorithm [16].

Algorithm 1 describes the LP process. In Steps 4-8, the
L labels we consider are propagated one by one, and y·k is
the row vector describing the probabilities of every user to
possess label lk. On small graphs where inverting a |V| ×
|V| matrix is possible, Step 5-7 can be replaced by yt·k ←
(I−αS)−1y0·k, which directly yields the convergence solution.
However, in graphs with millions of nodes as we consider,
the inversion is too expensive. We will discuss an efficient
implementation of LP In Sec 4.5.

As indicated by Step 6, the learned attributes yi of each
node vi are coherent to attributes on the neighbors of vi, and
the larger wij is, the more similar yi and yj are. Therefore,
the LP process well preserves smoothness on the graph from
link closeness in W to attribute similarity in Y.

To maintain the interpretation of attribute probability,
we normalize the results of LP w.r.t. each attribute value to
maintain the interpretation of attribute probability, i.e., we
divide the maximum propagated score for each dimension of
yi, ∀yi ∈ Y. In this way, the importance of different labels
on each user is properly differentiated. Such normalization

5https://www.messenger.com/



Algorithm 1 Label Propagation

1: procedure LP
. Input

W: the current graph with weighted user links;
Y0: the observed user labels to be propagated;
α: the decay factor;
T : the number of maximum iterations.

. Output
YT : the inferred labels through propagation.

. Symmetrically normalize W
2: D ← the diagonal matrix with (i, i)-element equal to

the sum of the i-th row of W
3: S ← D−1/2WD−1/2

4: for k = 1 : L do
5: for t = 1 : T do
6: yt·k ← (1− α)y0·k + αSyt−1

·k
7: end for
8: end for
9: end procedure

also avoids the dominance of extremely large label probabil-
ities due to some occasional abnormality, such as the exces-
sive consumptions of contents from certain channels made
by a few individuals.

4.3 Link Learning Via Graph Construction
Based on attribute probabilities Y, we aim to learn user

links by reconstructing the graph and refining edge weights
using transition probabilities as described by Eq. 1. By set-
ting the derivative of wij to zero, we can directly get

wij = (1− β)eij + βpij , (6)

where we firstly update P with W fixed, and then update
W with P fixed. It is done only once in each iteration of
GC. The computation of pij is non-trivial, which involves
joining of all edges on the graph. While every path counts
in traditional graph theory, in large graphs with billions of
edges, it is usually unnecessary and too expensive to retrieve
every path. Moreover, paths are of different importance for
individual nodes. It is possible to just consider the top most
important paths and deliver good performance.

To improve both the efficiency and effectiveness of GC,
we design a novel edge sampling method for computing the
transition probabilities, which leverages the different impor-
tance of paths. Unlike [23] that samples edges by whether
it should exist on a graph w.r.t. its weight, we sample paths
by whether the random walker will pass a specific compo-
nent edge eij at each step w.r.t. a certain probability θij .
Since in our GC process, each edge on the graph can be
visited by random walkers for multiple times and thus be-
come a part of multiple paths, sampling every time upon
constructing each path gives more accurate approximations
to the true path-wise transition probabilities. Furthermore,
the sampling probability θ can be a fixed value for every
considered edge, or any functions on the node-edge triples,
providing the flexibility of preferring certain paths for spe-
cific tasks. In Sec 6 Figure 6, we show experimental results
on the impact of different settings of θ.

We summarize the GC process in Algorithm 2. Step 3
gives the flexibility of adjusting the one-step probabilities
with various intuitions and sub-models. We will give two
examples of them in Sec 5.

Algorithm 2 Graph Construction

1: procedure GC
. Input

Y: the current user labels;
W0: the user links to be reconstructed;
β: the trade-off factor.

. Output
WT : the learned links through reconstruction.
. Adjust one-step transition probabilities in W0

2: for each w0
ij do

3: w1
ij ← w0

ij · sim(yi,yj)
4: end for

. Re-normalize the adjusted probabilities
5: for each vi do
6: zi ← 0
7: for each vj ∈ N (vi) do
8: if w1

ij > zi then

9: zi ← w1
ij

10: end if
11: end for
12: for each vj ∈ N (vi) do
13: w1

ij ← w1
ij/zi

14: end for
15: end for

. Reconstruct the graph WT

16: WT = (1− β)W0 + βW1 · W1

17: end procedure

In Step 3, as attribute similarity is used to adjust the one-
step transition probabilities, the random walker is required
to ‘prefer’ edges connecting similarly labeled nodes. In this
way, the GC process well preserves smoothness on the graph
from attribute similarity in Y to link closeness in W.

The normalization in Step 5-15 maintains the link proba-
bility interpretation ofW, which effectively avoids the explo-
sion of edge weights. The normalized weights still differen-
tiate the closeness of different friends. Links with ignorable
normalized weights are removed to keep the graph sparse.
In this work, we empirically remove the links around each
node with weights that are smaller than 1% of the largest
weight.

Step 16 involves the multiplication of two sparse |V| × |V|
matrices, which is computational expensive on graphs with
millions of nodes. We design an efficient map-reduce pipeline
with Spark to implement it efficiently (see Sec 4.5).

4.4 Optimality and Convergence
The decomposition of the objective function into JLP and

JGC largely simplifies the optimization problem. In this sub-
section, we discuss the influence of this decomposition on the
overall optimization objective.

The four quadratic terms in Eq. 3 are all convex in W
and Y, respectively. Therefore, following the linearity and
composition rules of convexity, the overall objective func-
tion is convex. In the iterations of LP and GC, we update
W while fixing Y and vice versa. Although solving the opti-
mization in iterations might break the convexity, under the
smoothness assumption, the two processes should keep min-
imizing Eq. 3. Specifically, during the LP process, Eq. 2
clearly decreases. If we assume that in

∑
i,j(wij − pij)

2, wij
is positively related to pij , according to smoothness from Y



to W, then Eq. 1 should not increase. Similarly, during the
GC process, Eq. 1 clearly decreases. If we assume that in∑
i,j wij(yi−yj)

2, (yi−yj)2 is negatively related to wij , ac-
cording to smoothness from W to Y, then Eq. 2 should not
increase. During the experiments, we also observe quite sta-
ble performance of BLA during multiple runs with random
initializations on the same data.

The speed of convergence is influenced by the decay factor
α in LP and trade-off factor β in GC. During experiments
(see Sec 6), we observe that BLA usually achieves more than
80% optimal performance after 3 iterations and converges
within 8 iterations on very large data.

4.5 Efficient Spark Implementation
On social graphs consisting of millions of nodes, storing

the data in simple matrices and running the algorithm on a
single machine are no longer feasible. We implement BLA
on Spark with elaborately designed pipelines, which fully
leverage its MapReduce and GraphX functions [30].

For the LP process, as we discuss in Sec 4.2, inverting the
|V| × |V| matrix becomes intractable. Therefore, we resort
to the iterative propagation mechanism as described in Step
5-7 of Algorithm 1. Since a large amount of time is spent on
repeatedly joining the vertex RDDs and edge RDDs when
propagating each label, we interchange Step 4 and Step 5
and propagate a map of all weighted labels as we consider at
each time. This technique effectively improves the efficiency
of LP by a factor almost similar to the total number of labels
L on the graph. Moreover, we apply early stop and find
that the number of iterations does not significantly affect
the performance, as shown in Sec 6 Figure 7 (a).

For the GC process, as we discuss in Sec 4.3, multiplying
the |V|×|V| matrices is intractable. In this case, we design a
propagation based pipeline similar to that of LP to efficiently
compute the two-step transition probabilities. Specifically,
for each node, we generate a unique identity label and prop-
agate it on the graph just like a common attribute. After
two iterations of propagation, an identity label li found on
a node vj indicates a two-step path from vi to vj . Like LP,
we use a map to store the identity labels with edge weights,
so the transition probabilities can be simply computed by
adding up the values of the same keys. The edge sampling
method can be easily incorporated into the process by ran-
domly sampling on the edges to propagate the identity labels
at each step. In Sec 6 Figure 6, we show that the sampling
probability θ has a large impact on both the performance
and efficiency of the GC process.

We analyze the complexity of BLA in traditional matrix
computation on local machines, which may not be applicable
in real large networks. The BLA framework basically con-
sists of three steps: social graph initialization, label prop-
agation and graph construction. The complexities of pre-
processing labels and links are O(|V|) and O(|E|), respec-
tively. The major computation of LP lies in inverting the
Laplacian matrix, which is usually O(|V|3), while can be
improved to approximately O(|V|2) by leveraging link spar-
sity. GC takes O(|E|2) to compute the two-step transition
probabilities. Since the maximal iteration can be set to ex-
pect certain optimality, the overall computation complexity
of BLA is O(|V|2 + |E|2), where |V| and |E| are the numbers
of users and links in the network, respectively.

In real large networks with millions of nodes, the BLA
framework is implemented on Spark clusters with hundreds

of nodes (we use 300 in our largest experiments). Our novel
graph propagation pipelines and edge sampling method fur-
ther improve the efficiency of BLA.

5. DATA DRIVEN BLA SUB-MODELS
In this section, we present data analysis on an anonymous

subset of Snapchat’s social network. Based on the insights,
we develop a dynamic activeness model which takes in user
activeness in friend making behaviors, and an adaptive sig-
nificance model which considers the significance of various
attributes (labels). Both models can be seamlessly incorpo-
rated into our BLA framework.

The dataset used in this analysis consists of about 100K
users those are direct or 2-step friends (friends of friends) of
1K seed nodes randomly sampled from a set of daily active
Snapchat users. The user attributes are generated from their
interactions with popular Snapchat’s Discover channels and
top public accounts6. The data is fully anonymous.

Dynamic activeness model. One intuitive idea to im-
prove the GC process is to consider user activeness in mak-
ing friends. While we believe that users’ future activeness
should be related to their past friend making behaviors, it
is unclear how the two sides should be connected. Making
more friends in the past might indicate making more friends
later, because activeness is lasting. But it may also lead to
fewer new friends, because enough friends have been made.

(a) June vs. May (b) June vs. April

Figure 2: User activeness analysis results.

To better understand how past links influence the forma-
tion of new links, we take snapshots of links among the same
set of users made in each month and perform data analysis
on them. Figure 2 shows some insightful results we get. In
this study we count the number of links made by each user
in April, May and June 2016. Figure 2 (a) shows the num-
ber of links made in June grouped by the number in May,
and Figure 2 (b) shows the June number grouped by April.
From the figures, we can get the following conclusions: 1)
users’ activeness changes over time; 2) activeness in the past
is positively correlated to that in the future; 3) activeness in
the more recent past is more related to that in the future.

Inspired by these observations, we model user’s dynamic
activeness by assuming 1) the more links a node made in
the past, the more active it will be later and 2) the older
the existing link is, the smaller influence the link has. To
this end, we design a dynamic activeness model based on the

6accounts of celebrities, internet personality, organizations
and brands who make their story public available and has a
large number of followers



exponential family [25], and formulate the user activeness as
follows.

Φ(vi) =
∑

j: vj∈N (vi)

exp
(
− ∆tij

τ

)
, (7)

where N (vi) is the set of neighbors of vi, ∆tij is the time
difference between the current time and the time of the cre-
ation of link eij or the last communication between vi and
vj , and τ is a bandwidth parameter, controlling the decaying
speed of the influence of old links. ∆t’s are float numbers
in the unit of a day, which are dynamically computed be-
fore each GC process. The influence of old links dies out
exponentially as the time difference gets large.

Adaptive significance model. The performance of BLA
can be further improved by considering the significance of
various attributes (labels). In our Snapchat dataset, we con-
sider various Discover channels as the dimensions of user in-
terests, so different channels may not contribute in the same
way to a user’s friend making behaviors. E.g., people highly
interested in a video game channel may be more likely to
make friends with each other compared with people inter-
ested in a general news channel.

(a) #nodes and #links (b) Significance

Figure 3: Label significance analysis results (labels
anonymized and Y-ticks hidden for privacy issues).

We analyze the Snapchat data to validate our intuition
about the significance of label types. Users who read stories
of a Discover channel or follow a public account are assigned
with a unique label. Figure 3 shows some insightful results
we get. In Figure 3 (a), each blue bin is the number of users
that have a specific label and each green bin is the number
of links made among that group of users. As we can see,
some labels potentially lead to more links than the others.
E.g., users having Label1 (a popular entertaining channel)
make more links than those having Label8 and Label10 (two
celebrity public accounts). However, Label1 is so popular as
shared by lots of users, so they in fact should not contribute
much to the formation of friend links. On the other hand,
Label8 and Label10 with smaller numbers of followers but
relatively larger numbers of links should be more significant.

The situation reminds us of the widely used TF-IDF in
information retrieval [7]. TF-IDF weights the importance
of a term T within a document D by multiplying a term
frequency (TF) of T in D and dividing an inverse document
frequency (IDF) as the number of all documents having T .
Inspired by it, we formulate label significance as

Θ(li) =
2L(li)

N (li)2
, (8)

where N (li) is the number of users having label li, and L(li)
is the number of links made among theN (li) users. N (li)

2/2
is about the number of all possible links that can form among
the N (li) users. Upon input data, our significance model
works similarly as TF-IDF, where the number of links con-
tributes positively to the weight, and the number of nodes
contributes negatively. Figure 3 (b) shows the significance
computed for the same group of labels.

Integrating sub-models. Our BLA framework is designed
with the flexibility for integrating various sub-models devel-
oped under validated intuitions. In Algorithm 2 Step 3 as
we adjust the one-step transition probabilities on graph, the
activeness model is integrated by adding Φ(vi)Φ(vj) after
sim(yi,yj), and the significance model is integrated into
the computation of sim(yi,yj) through re-weighting each
dimension of y according to Θ(l·). We evaluate the sub-
model performances comprehensively in Sec 6 Figure 8.

6. EXPERIMENTS
In this section, we comprehensively evaluate the perfor-

mance of BLA on three real-world datasets.
On the public Google+ (G+) and Facebook (FB) datasets

from [5] and [14], we compare BLA with several state-of-the-
art algorithms on the tasks of link prediction and attribute
inference.

On our internal Snapchat (SC) dataset, we are able to
scale BLA up to millions of users and billions of links and
finish within reasonable time (e.g., several hours), which is
impossible for most existing algorithms that combine links
and contents. On this dataset, we analyze the efficiency of
our Spark pipelines and study the impact of various model
and parameter settings.

6.1 Experimental Settings

Datasets. Statistics of the three datasets we use are shown
in Table 1. More details about the G+ and FB datasets can
be found in the original works [5, 14]. In our SC dataset,
1M seed nodes are randomly sampled from a set of daily
active users in US and then all of their direct and two-step
friends are included. The links are friendships among them,
and the attributes are generated based on their interactions
with the most popular Discover channels (clicks) and public
accounts (follows). For link prediction, the evaluations are
done on the new links made in one month; for attribute
inference, we uniformly sample 10% of the users and remove
their attributes for evaluation.

Dataset #nodes #links #attributes
SC 32,674,735 2,336,875,877 273,742
FB 4,039 88,234 1,282
G+ 5,200 8,100 9,539

Table 1: Summary of 3 real-world network datasets.

Compared algorithms. Our proposed BLA algorithm is
compared with the following baselines. The parameters of
all methods are set via standard 5-fold cross validation.

• RWWR [29]: a joint link prediction and attribute
inference algorithm based on random walk.



• SAN [5]: a joint link prediction and attribute infer-
ence algorithm based on link features computed by
Adamic-Adar and Low-Rank Approximation.

• SRW [1]: a link prediction algorithm based on super-
vised random walk guided by user labels.

• WTFW [2]: a link prediction algorithm based on
a probabilistic generative model that simultaneously
learns and explains social links.

• RNC [13]: a simple attribute inference algorithm that
leverages labeled neighbors without learning.

• EdgeExp [3]: an attribute inference algorithm that
leverages a softmax function to solve for both user at-
tributes and relationship types.

Metrics. We use ROC and Precision (Pr@K) to measure
the performance of link prediction and attribute inference,
respectively, which is commonly done in related literature [5,
29]. Attribute predictions are made on unlabeled nodes with
higher inferred label probabilities than the average value on
the labeled nodes. We also use minute to measure the run-
time.

6.2 Performance evaluation

BLA effectiveness. We evaluate the effectiveness of BLA
on the public G+ and FB datasets.

(a) Performance on G+ (b) Performance on FB

Figure 4: Link prediction evaluation in ROC.

Algorithm
G+ Dataset

Pr@2±std Pr@3±std Pr@4±std
RWWR 0.433±.011 0.564±.008 0.738±.009
SAN 0.417±.020 0.549±.021 0.714±.018
RNC 0.291±.006 0.374±.005 0.472±.005

EdgeExp 0.454±.016 0.591±.016 0.770±.015
BLA 0.494±.008 0.642±.009 0.833±.008

Algorithm
FB Dataset

Pr@2±std Pr@3±std Pr@4±std
RWWR 0.465±.009 0.611±.010 0.823±.010
SAN 0.476±.018 0.632±.018 0.830±.019
RNC 0.328±.004 0.433±.005 0.578±.004

EdgeExp 0.523±.014 0.678±.014 0.886±.014
BLA 0.542±.006 0.702±.007 0.931±.008

Table 2: Attribute inference evaluation in Pr@K.

Figure 4 and Table 2 show the link prediction and at-
tribute inference results, respectively. Our experiments were
run 10 times over different random training/testing set splits.
Besides the average values of the metrics, Figure 4 also shows
the ROC curves belonging to the scores that are the closest

to the averages, while Table 2 also shows the standard devi-
ations (std). The results of all baselines in comparison with
BLA have passed our paired t-test with p value p < 0.01.

As we can see, BLA achieves the best performance in both
tasks. It is 16% and 12% better than the second runner
method in link prediction, and also significantly better than
all baselines in attribute inference, on both datasets. BLA
excels on networks with sparser links and labels like G+.
The second runners (i.e. SAN and EdgeExp) on the two
tasks both learn links and attributes simultaneously, which
shows the effectiveness of joint learning. The better per-
formance of BLA further indicates the advantage of the bi-
directional inference between user links and attributes in
iterations.

BLA efficiency. We show the efficiency of our BLA Spark
pipelines in Figure 5. We randomly sampled 10 subnet-
works of different sizes from our internal SC dataset and
ran BLA on a local PC versus Spark clusters. The local PC
we use has two 2.5 GHz Intel i7 processors and 8GB mem-
ory. For Spark, we use a cluster of 4 n1-highmem-16 (16
vCPU, 104GB memory) machines from the Google Cloud
Platform. As we can see, the runtime of BLA on Spark is
much less and grows much slower than that on the local PC
as the size of network increases. Notice that, the largest net-
work we consider here only has about 100K users, but BLA
on a local PC takes several hours to finish. The situations
are similar for other baselines, and most of them cannot be
trivially scaled up to real-world networks.
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Figure 5: Runtimes of BLA on a local PC vs Spark
with different sizes of user.

BLA model selection. On our internal large SC dataset,
we conduct comprehensive experiments on different parame-
ter and sub-model settings to further study the performance
of BLA. Due to space limit, we only show the evaluation re-
sults on link prediction.
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Figure 6: GC evaluation with varying settings of θ.

As discussed in Sec 4, for the GC process, we study how
different settings of the edge sampling probabilities θ influ-
ence the performance. We experiment on three strategies:



• fixed : we set all θij to be a fixed sampling threshold ρ.

• pred : we set θij as ρ scaled by a convex half sigmoid
function parameterized by the number of out links of
vi. In this way, we hope to get better prediction results
by sampling more paths for nodes with more links.

• rec: we set θij similarly as for pred, but scaled by a
concave half sigmoid function. This might be better
for the recommendation task, where we sample more
paths for nodes that do not have a lot of links.

As we can see in Figure 6, the performance always con-
verges fast as ρ increases to 0.6 (which corresponds to about
85% of the best performance), and the runtime goes up fast
as ρ increases. The fixed strategy performs the best. It could
be explained as it approximates the true two-step transition
probabilities by granting the same chance for every edge to
survive the sampling process. Such empirical results lead us
to believe that fixing θ to a value around 0.6 yields a good
trade-off between efficiency and effectiveness.

For the LP process, we study how the propagation strength
α may influence the convergence and performance, and how
early we can stop the propagation to save computation with-
out significantly sacrificing performance. As we can see in
Figure 7 (a), LP achieves optimal performance almost im-
mediately after very few iterations with various values of α,
which indicates that the attributes of close neighbors are
most effective in the inference. As α increases to a value
closer to 1, the performance gets better, which is consistent
with previous studies on LP [26, 31].
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Figure 7: LP and BLA(LP+GC) evaluation with
varying iteration numbers.

We compare the overall BLA framework against the best
settings of GC and LP processes alone. As we can see in Fig-
ure 7 (b), BLA converges rapidly with a few iterations and
the improvement over GC and LP is significant, i.e., around
20% and 27% respectively. The results indicate that by
leveraging the mutual reinforcement between user attributes
and links, BLA is advantageous in predicting new links.

Figure 8 (a) presents the improvements made by the dy-
namic activeness model. We evaluate the GC performance
with varying activeness bandwidth τ in the unit of a day.
The larger τ is, the longer past friends making behaviors
count. As we can see, the activeness model significantly im-
proves the GC performance by around 4.2% and different τ
values do not influence the performance much. Users’ friend
making behaviors in the recent 5-10 days are the most in-
formative when computing their current activeness.

Figure 8 (b) demonstrates the improvements brought by
the adaptive significance model. The LP performance is
measured against varying significance thresholds θ. Attributes

with significance lower than θ are eliminated in the com-
putation of similarity. As can be seen, we achieve about
5.5% better LP performance by incorporating the signifi-
cance model and θ does not influence the performance much
in the specific range. The best performance is achieved with
θ = 0.1, when less important labels are properly eliminated.
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Figure 8: Sub-model evaluations with varying τ , θ.

7. CONCLUSION
BLA is a general framework that effectively completes and

refines social graphs in terms of links and attributes. On
each side, the data redundancy is leveraged to refine the
existing information and infer the missing. The close loop of
GC and LP then utilizes the mutual reinforcement between
links and attributes.

Recently, research in community detection indicates that
learning the complete graphs might also be a necessary pre-
lude for efficient network clustering [20], while research in
security and smart policing also suggests that the predicted
graphs can be compared with the existing networks to detect
outliers as potential offenders [21]. Beyond social networks,
BLA can also be used to effectively complete and refine in-
formation in various domains such as research bibliographic
networks, where future co-authorships as links and poten-
tial research interests as attributes can be jointly predicted,
and biomedical interaction networks, where non-observed
protein-protein interactions as links and biological pathways
as attributes can be mutually reinforced.
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